
International Conference on Computer Systems and Technologies - CompSysTech’2006

- -

Web Services Example with PHP/SOAP

Martin Tsenov

Abstract: This paper explains decision for Web Services architecture between distributed network

systems. The proposed method is based on Open Source standards - SOAP and WSDL. Software solution
based on the proposed architecture, developed using SOAP extension for PHP is presented and explained.

Key words: PHP, SOAP, Web Services

INTRODUCTION
The use of data exchange and need to define resource on the World Wide Web is

expanding rapidly with the application-to-application communication and interoperability
grows. These services provide a standard means of network communication between
different software applications involved in presenting dynamic context-driven information to
the user. In order to promote interoperability and extensibility among these applications, as
well as to allow them to be combined in order to perform more complex operations, Web
services architecture is needed. In this paper the author describes a set of requirements
for Web Services architecture between distributed network systems and developed
software implementation example, based on the proposed method. Web Services example
is based on the SOAP protocol, WSDL standard and SOAP extension for PHP. The main
aim of the proposed method is to provide data access and exchange to various clients via
Web Services. The example revolves around the open source standards, which allows for
clients to access and exchange data and resources between distributed databases. It also
allows various other system users to interact with the application. Below is the sequence of
activities of the example:

- Define the Web services architecture.
- Implementation of the Web services architecture.
- Develop a Software implementation based on the Web services architecture.

 WEB SERVICES ARCHITECTURE AND SOFTWARE IMPLEMENTATION
A. Theoretical part

 - SOAP - SOAP (Simple Object Access Protocol) [1] is a lightweight XML-based
protocol for exchanging structured information between distributed applications over native
web protocols, such as HTTP. SOAP specifies the formats that XML messages should
use, the way in which they should be processed, a set of encoding rules for standard and
application-defined data types, and a convention for representing remote procedure calls
and responses.

SOAP protocol consists of three parts:
1. An envelope which describes the contents of the message and how to use it
2. A set of rules for serializing data exchanged between applications
3. A procedure to represent remote procedure calls, that is, the way in which queries

and the resulting responses to the procedure are represented.
 - WSDL - WSDL (Web Service Description Language) [2] is an XML format for
describing network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and messages are
described abstractly, and then bound to a concrete network protocol and message format
to define an endpoint. Related concrete endpoints are combined into abstract endpoints
(services). WSDL is extensible to allow description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate.

International Conference on Computer Systems and Technologies - CompSysTech’2006

- -

B. Web services architecture.
The Web services architecture is defined by the following steps:

- The calling application Internet browser (IE, Mozilla) or other Application (Web program)
makes a procedure call on the WSDL file and SOAP Service client.
- The SOAP Service client takes the method and parameters and builds an XML container
for them; the XML container is the sent over HTTP as a SOAP request.
- SOAP Service server receives the SOAP requests; Soap_parser_class parses that XML
container and determines the method to be called and the parameters to this method.
- The method is executed on the server and returns a result.
- The result is packaged as XML and the server returns the XML result container as the
response of the POST request by Soap_transport_http_class.
- The client parses the XML response container and returns the result to the calling
application.
- The application processes the result.

Figure 1 presents the structure of the Web services architecture.

Fig.1 Web services architecture

C. Software implementation of Web services architecture.
Software implementation of the Web services [3] architecture is used for conference

web system for submission, upload and review. As a programming language open source
CGI script language PHP5 [4] is used. The example is defined by the following steps:

1. To define SOAP Client in the beginning of the Soap Service, it is need to gather
some information about this particular service [5]:
- The method name
- The endpoint URL where the service is running
- The SOAPAction header value for the method
- The namespace URI for the method
- Input and output parameter names and types
In the proposed exampled the needed information are display below:

 xml class

SOAP extension for PHP

Client IE
 Mozila
 Other Apps.

WSDL file

Service

Soap client
class

Wsdl class

Soap parser
class

Soap transport
class

International Conference on Computer Systems and Technologies - CompSysTech’2006

- -

 Table1. Service Definition

Method Name getData
Endpoint URL http://hs19.iccs.bas.bg/nusoap
SOAPAction urn:getData#getData
Method Namespace URI urn:getData
Input Parameters Symbol:string
Output Parameters Result:float

 The service information is implemented in the example by SOAP Service

client written in PHP5 [5]: Table 2 display SOAP Service client class

 Table2. SOAP Service client

<?php
$client = new SoapClient(NULL,
 array("location" => "http://hs19.iccs.bas.bg/nusoap",
 "uri" => "urn:getData",
 "style" => SOAP_RPC,
 "use" => SOAP_ENCODED
));
…………….
…………….
print($client->__call(
 /* SOAP Method Name */
 /* Parameters */
 array(
 new SoapParam(
 /* Parameter Value */
 /* Parameter Name */
)),
 /* Options */
 array(
 /* SOAP Method Namespace */
 /* SOAPAction HTTP Header for SOAP Method */
)). "\n");
……………….
………………
?>

2. The second task is to create a WSDL document [6] describing our service in a
format that client requests will understand. Below is the structure of WSDL document with
two messages (sub.wsdl):

The message section defines two messages. The first is getDataRequest, which is
a request to relay the getData message and takes one string parameter called symbol.
The other is getDataResponse, which is a response to the getData message, containing
one float value, named Result. The portType section defines one operation, getData,
which describes which of the messages listed in the message section will be used to
transmit the request and response. The binding section defines how the messages must
be transmitted and encoded. Here it tells us that we will be sending an RPC request using
SOAP encoding across HTTP. It also specifies namespace and value of the SOAPAction
header for the getData method. The service section defines the endpoint URL where the
service is running.

Table 3 display the structure of WSDL document.

International Conference on Computer Systems and Technologies - CompSysTech’2006

- -

 Table3. Structure of WSDL document

<?xml version ='1.0' encoding ='UTF-8' ?>

<definitions name='getData'
 targetNamespace='getData'
 xmlns:tns='getData'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 xmlns='http://schemas.xmlsoap.org/wsdl/'>

<message name='getDataRequest'>
 <part name='symbol' type='xsd:string'/>
 </message>
<message name='getDataResponse'>
 <part name='Result' type='xsd:float'/>
 </message>

<portType name='getDataPortType'>
 <operation name='getData'>
 <input message='tns:getDataRequest'/>
 <output message='tns:getDataResponse'/>
 </operation>
</portType>

<binding name='getDataBinding' type='tns:getDataPortType'>
 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http'/>
 <operation name='getData'>
 <soap:operation soapAction='urn:getData#getData'/>
 <input>
 <soap:body use='encoded' namespace='urn:getData'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </input>
 <output>
 <soap:body use='encoded' namespace='urn:getData'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </output>
 </operation>
</binding>

<service name='getDataService'>
 <port name='getDataPort' binding='getDataBinding'>
 <soap:address location='http://hs19.iccs.bas.bg/nusoap'/>
 </port>
</service>

</definitions>

3. The third task of example is the development of Soap_parser_class,

Soap_transport_http_class and integration [7] of the Web system for submission, upload
and review with proposed Web Services architecture. All of the files of the Web system
must be located in the service section, defined in wsdl file, where the endpoint URL of the
service is running.
The software example can be reach at http://hs19.iccs.bas.bg/nusoap/ws_wizard.php.

International Conference on Computer Systems and Technologies - CompSysTech’2006

- -

C. Comparison between Open Sources based software tools and commercial

(shareware) software products SAP NetWeaver and IBM’s Web Services Process
Management Toolkit.

1. Review of commercial (shareware) software products.
1.1 SAP NetWeaver [8]:
- Technical Details: SAP NetWeaver is designed as a platform for the development,

deployment, and management of Web services. For example, SAP NetWeaver Portal uses
Web services to offer role-based interfaces that allow partners to work together. The
application platform provides existing application functionality, based on Java or ABAP, as
Web services. These services are described using Web Services Description Language
(WSDL).

The Web services are provided through a framework used by the integration broker to
describe Web services interfaces in a Universal Description, Discovery, and Integration
(UDDI) repository. Business process management coordinates the activities of Web
services provided by business partners to manage processes across applications.

Simple Object Access Protocol (SOAP) provides a mechanism for sending Web
service messages and XML service requests based on WSDL.

1.2 Web Services Process Management Toolkit – part of the IBM’s WebSphere MQ

Workflow [9]:
- Technical Details: The Web Service Process Management Toolkit (WSPMTK)

combines business process management technology with Web Services and offers the
tools and samples needed. Web Service Process Management Toolkit working process
description:

- Compose Web Services into a business process: Composing Web Services
allows developers to choreograph the interaction of a set of Web Services
within a business process and add control logic to the business process.

- Implement a Web Service as its own business process: Using a process as
implementation for a Web Service allows developers to compose complex
Web Services with the characteristics of a process.

- Software requirements:
- JDK V1.3.1or later.
- WebSphere MQ Workflow V3.4 or later.
- Apache AXIS V1.1
- Web Application Server, which complies with the Java Servlet V2.2 or later.

2. Conclusions based on the comparison between Open Sources based software

tools and commercial (shareware) software products - the advantages of using Open
Source based products and standards:
- Possibility for free integration with others products based on the Open Source.
- Possibility for free integration of scientific results (algorithms, methods, models).
- Possibility for future improvement of the work.
- No need of software licenses (freeware).

RESULTS
Main results of the paper:

- Presented Web services architecture: describes algorithm for Web services
architecture based on the WSDL, SOAP and XML standards.

- Develop and describe WSDL file for Web Services.
- Develop software application based on the Open Source Web services

architecture.

International Conference on Computer Systems and Technologies - CompSysTech’2006

- -

CONCLUSIONS AND FUTURE WORK

 This paper explained decision for Web Services architecture between distributed
network systems. The proposed method is based on Open Source standards - SOAP and
WSDL. Software solution based on the proposed architecture, developed using SOAP
extension for PHP is presented and explained. The main aim of the proposed model is to
provide data access to various clients via Web Services. The example revolves around the
open source standards, which allows for clients to access and exchange data and
resources between distributed databases. It also allows various other system users to
interact with the application.

The future work is about the problem for optimization of searching methods for
services and resources.

REFERENCES
[1] http://www.w3.org/TR/2003/REC-soap12-testcollection-20030624/
[2] http://www.developer.com/services/article.php/1602051
[3] Stoilov T., K. Stoilova. Integration of Web Services in Internet. 18th International

Conference on Systems for Automation of Engineering and Research "SAER-2004", 24-26
September, 2004, St. Konstantin resort, Varna, Bulgaria.

[4] C. Scollo, J. Castagnetto, D. Veliath, H. Rawat, S. Schumann, Professional PHP
Programming, Wrox, December 1999

[5] http://www.zend.com/php5/articles/php5-SOAP.php
[6] Newcomer E., Understanding Web Services: XML, WSDL, SOAP and UDDI,

Pearson Education, 2002
[7] Ivanova E., Application of Distributed Search in Databases for Web Services,

2003, Proceedings of International conference ICEST’03, Sofia, Bulgaria, p.291-294
[8] http://www.sap.com/platform/netweaver/technicaldetails/webservices.epx
[9] http://www-306.ibm.com/software/websphere/

ABOUT THE AUTHOR

 Assist. Prof. Martin Tsenov, Department Hierarchical Systems, Institute of Computer
and Communication Systems - Bulgarian Academy of Sciences, Sofia, Phone +359 2 979
2774, E-mail: mcenov@hsi.iccs.bas.bg

This research is partly supported by the European Commission, project №FP6-

027178.

